#### SESSION 1: STATE OF THE AQUAFEED INDUSTRY IN ASIA AND GROWTH IN VIETNAM



# Matthew Clark Director FeedGuys Resources Pte Ltd Singapore Email: matthew@feedguys.com

# Formulation Techniques for Capturing Genetic Potential of Aqua Species and Optimising Digestible Amino Acid Content

#### **Abstract**

Feed formulation in poultry has grown in sophistication to be able to capture both digestibility of raw materials and how they can be formulated to maximize the genetic potential of chickens. Similar research and formulation techniques can be applied to formulation of diets for aqua species to achieve both the optimum diet digestibility and the optimum density to capture genetic growth potential. Examples will be given of how to deliver optimum nutrition, extending the current practices in poultry feeding into the aqua sector.





"Formulation Techniques for capturing genetic potential of aqua species and optimising digestible amino acid content"

Matthew Clark
FeedGuys Resources Pte Ltd

# Introduction – learnings from Poultry?

- Feed formulation in Poultry has grown in sophistication to be able to capture:
  - > digestibility of raw materials
  - Formulation to maximize the genetic potential of chickens.
- Similar research and formulation techniques can be applied to formulation of diets for aqua species to achieve:
  - ➤ Optimum diet digestibility
  - ➤ Optimum density to capture genetic growth potential.
- Selecting raw materials and evaluating new sources



# Agenda

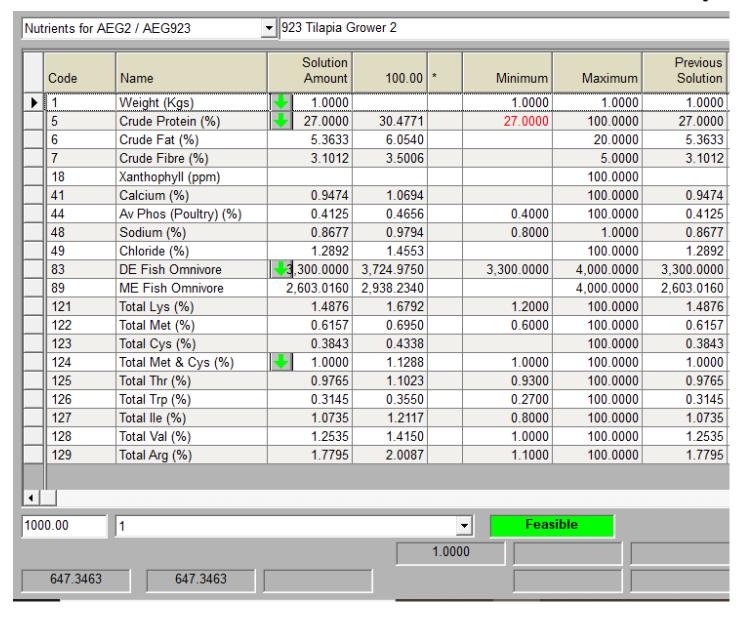
- Reduction of excess nutrients
  - ➤ Crude protein
  - **≻**Phosphorous
- Reduces cost and pollution

- Discovery of optimal amino acid supply
  - ➤ Titration of amino acid leve
  - > Calculation of the most cost effective
- Alternative ingredient studies



## Minimise Excess Protein – Lessons From Layers

| Parameters                     | Crude protein (g/kg) |       |       |  |  |  |  |
|--------------------------------|----------------------|-------|-------|--|--|--|--|
|                                | 140.0                | 155.0 | 170.0 |  |  |  |  |
| Feed (g/day)                   | 116.0                | 115.4 | 113.9 |  |  |  |  |
| Lysine (mg/day)                | 940.9                | 936.0 | 924.1 |  |  |  |  |
| Production (%)                 | 77.22                | 76.02 | 75.24 |  |  |  |  |
| Egg weight (g)                 | 66.63                | 66.82 | 66.67 |  |  |  |  |
| Egg output (g/day)             | 51.45                | 50.82 | 50.18 |  |  |  |  |
| Yolk (%)                       | 24.94                | 24.39 | 24.19 |  |  |  |  |
| Manure crude protein<br>(g/kg) | 338.8                | 385.4 | 464.9 |  |  |  |  |


#### Excess crude protein:

increases cost

 Increases nitrogen excretion

 Increases pollution and disease risk

## Effect of reduction in the crude protein level

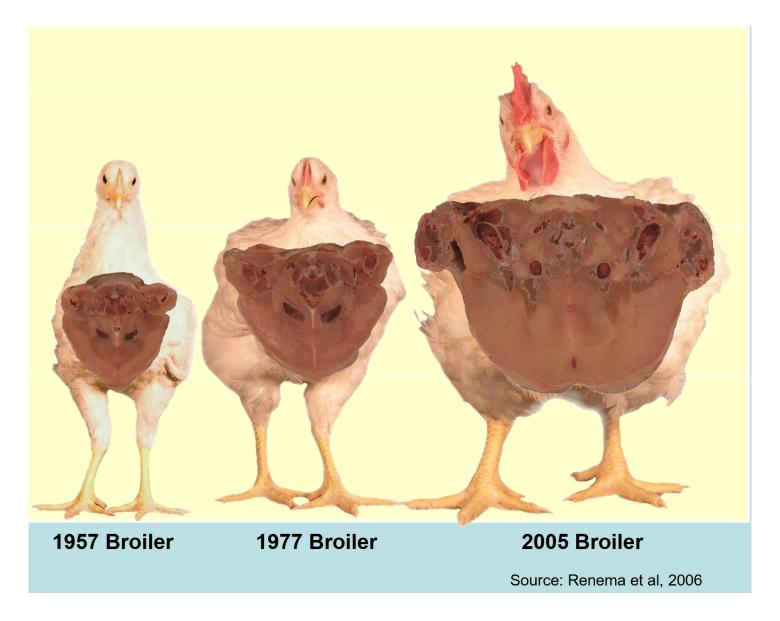


 Starting formula has crude protein minimum

Methionine and cysteine level is limiting

 Crude protein may be on minimum for legal reasons or for safety margins

The Aquaculture Roundtable Series

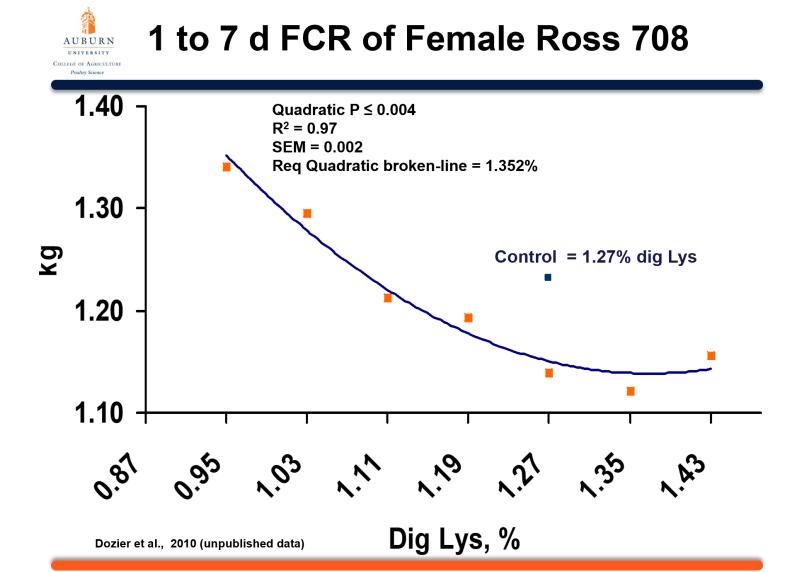

# Effect of reduction in the crude protein level



- Crude protein minimum removed
- Threonine and tryptophan become limiting
- Cost of feed reduced
- 'non-essential amino acids may be too low nd cause carcass quality effects

TARS 2022

#### Genetic advances and potential - Broilers

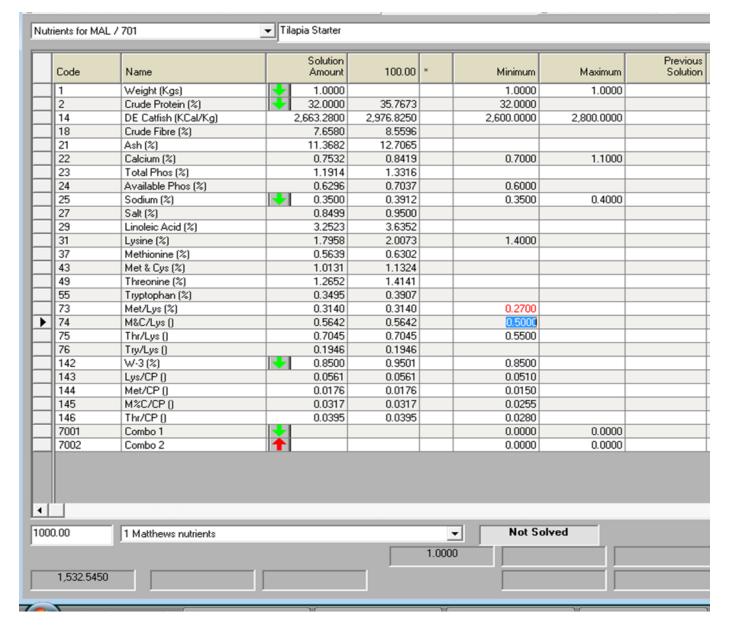



- Carcass composition has changed dramatically by genetic selection
- Improved genetics require re-engineered feeds

 Titration required to find correct protein level



## Finding the right protein level - Broilers




As Digestible lysine increases, FCR decreases

- Diminishing returns begin at 1.25%
- Optimum is 1.35%
- Much higher than 1996 levels



#### Amino Acid Ratios needed for titration study



 Digestible lysine is very close to the minimum ration of Lys:CP

 Lysine is the only limiting amino acid

 Additional raw materials with different AA profiles can help to make AA supply more efficient

> TARS 2022

The Aquaculture Roundtable Series

#### Parametric Analysis shows cost effective protein Level

| Nutrients I | utrients for MAL / 701 Minimum: 2 - Crude Protein |                                 |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |  |  |  |  |
|-------------|---------------------------------------------------|---------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--|--|--|--|
| Code        | Name                                              | 32.0000<br>436.8688<br>1,000.00 | 31.8000<br>435.4390<br>-1.4298<br>1,000.00 | 31.6000<br>434.0092<br>-1.4298<br>1,000.00 | 31.4000<br>432.5793<br>-1.4298<br>1,000.00 | 31.2000<br>431.1495<br>-1.4298<br>1,000.00 | 31.0000<br>429.7197<br>-1.4298<br>1,000.00 | 30.8000<br>428.2898<br>-1.4298<br>1,000.00 | 30.6000<br>426.8599<br>-1.4299<br>1,000.00 | 30.4000<br>425.4301<br>-1.4298<br>1,000.00 | 30.2000<br>424.0002<br>-1.4298<br>1,000.00 |  |  |  |  |
| 1           | Weight                                            | 1.0000                          | 1.0000                                     | 1.0000                                     | 1.0000                                     | 1.0000                                     | 1.0000                                     | 1.0000                                     | 1.0000                                     | 1.0000                                     | 1.000                                      |  |  |  |  |
| 2           | Crude Protein                                     | 32.0000                         | 31.8000                                    | 31.6000                                    | 31.4000                                    | 31.2000                                    | 31.0000                                    | 30.8000                                    | 30.6000                                    | 30.4000                                    | 30.200                                     |  |  |  |  |
| 14          | DE Catfish                                        | 2,663.1240                      | 2,657.0510                                 | 2,650.9770                                 | 2,644.9040                                 | 2,638.8300                                 | 2,632.7560                                 | 2,626.6830                                 | 2,620.6090                                 | 2,614.5350                                 | 2,608.462                                  |  |  |  |  |
| 18          | Crude Fibre                                       | 7.6584                          | 7.7150                                     | 7.7717                                     | 7.8284                                     | 7.8850                                     | 7.9417                                     | 7.9984                                     | 8.0550                                     | 8.1117                                     | 8.168                                      |  |  |  |  |
| 21          | Ash                                               | 11.3683                         | 11.4110                                    | 11.4536                                    | 11.4963                                    | 11.5390                                    | 11.5816                                    | 11.6243                                    | 11.6670                                    | 11.7097                                    | 11.752                                     |  |  |  |  |
| 22          | Calcium                                           | 0.7532                          | 0.7518                                     | 0.7504                                     | 0.7490                                     | 0.7476                                     | 0.7462                                     | 0.7448                                     | 0.7434                                     | 0.7420                                     | 0.740                                      |  |  |  |  |
| 23          | Total Phos                                        | 1.1914                          | 1.1943                                     | 1.1972                                     | 1.2002                                     | 1.2031                                     | 1.2060                                     | 1.2090                                     | 1.2119                                     | 1.2148                                     | 1.217                                      |  |  |  |  |
| 24          | Available Phos                                    | 0.6296                          | 0.6292                                     | 0.6288                                     | 0.6285                                     | 0.6281                                     | 0.6277                                     | 0.6273                                     | 0.6269                                     | 0.6265                                     | 0.626                                      |  |  |  |  |
| 25          | Sodium                                            | 0.3500                          | 0.3500                                     | 0.3500                                     | 0.3500                                     | 0.3500                                     | 0.3500                                     | 0.3500                                     | 0.3500                                     | 0.3500                                     | 0.350                                      |  |  |  |  |
| 27          | Salt                                              | 0.8499                          | 0.8498                                     | 0.8496                                     | 0.8495                                     | 0.8494                                     | 0.8492                                     | 0.8491                                     | 0.8490                                     | 0.8488                                     | 0.848                                      |  |  |  |  |
| 29          | Linoleic Acid                                     | 3.2525                          | 3.2738                                     | 3.2951                                     | 3.3164                                     | 3.3378                                     | 3.3591                                     | 3.3804                                     | 3.4017                                     | 3.4231                                     | 3.444                                      |  |  |  |  |
| 31          | Lysine                                            | 1.7985                          | 1.7985                                     | 1.7985                                     | 1.7985                                     | 1.7985                                     | 1.7985                                     | 1.7985                                     | 1.7985                                     | 1.7985                                     | 1.798                                      |  |  |  |  |
| 37          | Methionine                                        | 0.5638                          | 0.5612                                     | 0.5585                                     | 0.5559                                     | 0.5532                                     | 0.5506                                     | 0.5479                                     | 0.5453                                     | 0.5427                                     | 0.540                                      |  |  |  |  |
| 43          | Met & Cys                                         | 1.0130                          | 1.0069                                     | 1.0007                                     | 0.9945                                     | 0.9883                                     | 0.9821                                     | 0.9759                                     | 0.9698                                     | 0.9636                                     | 0.957                                      |  |  |  |  |
| 49          | Threonine                                         | 1.2650                          | 1.2555                                     | 1.2459                                     | 1.2364                                     | 1.2268                                     | 1.2173                                     | 1.2078                                     | 1.1982                                     | 1.1887                                     | 1.179                                      |  |  |  |  |
| 55          | Tryptophan                                        | 0.3495                          | 0.3462                                     | 0.3430                                     | 0.3397                                     | 0.3364                                     | 0.3332                                     | 0.3299                                     | 0.3267                                     | 0.3234                                     | 0.320                                      |  |  |  |  |
| 73          | Met/Lys                                           | 0.3135                          | 0.3120                                     | 0.3105                                     | 0.3091                                     | 0.3076                                     | 0.3061                                     | 0.3047                                     | 0.3032                                     | 0.3017                                     | 0.300                                      |  |  |  |  |
| 74          | M&C/Lys                                           | 0.5633                          | 0.5598                                     | 0.5564                                     | 0.5530                                     | 0.5495                                     | 0.5461                                     | 0.5426                                     | 0.5392                                     | 0.5358                                     | 0.532                                      |  |  |  |  |
| 75          | Thr/Lys                                           | 0.7034                          | 0.6981                                     | 0.6928                                     | 0.6875                                     | 0.6821                                     | 0.6768                                     | 0.6715                                     | 0.6662                                     | 0.6609                                     | 0.655                                      |  |  |  |  |
| 76          | Try/Lys                                           | 0.1943                          | 0.1925                                     | 0.1907                                     | 0.1889                                     | 0.1871                                     | 0.1853                                     | 0.1834                                     | 0.1816                                     | 0.1798                                     | 0.178                                      |  |  |  |  |
| 142         | W-3                                               | 0.8500                          | 0.8500                                     | 0.8500                                     | 0.8500                                     | 0.8500                                     | 0.8500                                     | 0.8500                                     | 0.8500                                     | 0.8500                                     | 0.850                                      |  |  |  |  |
| 143         | Lys/CP                                            | 0.0562                          | 0.0566                                     | 0.0569                                     | 0.0573                                     | 0.0576                                     | 0.0580                                     | 0.0584                                     | 0.0588                                     | 0.0592                                     | 0.059                                      |  |  |  |  |
| 144         | Met/CP                                            | 0.0176                          | 0.0176                                     | 0.0177                                     | 0.0177                                     | 0.0177                                     | 0.0178                                     | 0.0178                                     | 0.0178                                     | 0.0179                                     | 0.017                                      |  |  |  |  |
| 145         | M%C/CP                                            | 0.0317                          | 0.0317                                     | 0.0317                                     | 0.0317                                     | 0.0317                                     | 0.0317                                     | 0.0317                                     | 0.0317                                     | 0.0317                                     | 0.031                                      |  |  |  |  |
| 146         | Thr/CP                                            | 0.0395                          | 0.0395                                     | 0.0394                                     | 0.0394                                     | 0.0393                                     | 0.0393                                     | 0.0392                                     | 0.0392                                     | 0.0391                                     | 0.039                                      |  |  |  |  |
| 7001        | Combo1                                            |                                 |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |  |  |  |  |
| 7002        | Combo2                                            |                                 |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |  |  |  |  |

Each 0.2%
 reduction in the
 crude protein level
 saves US\$ 1.43 per
 tonne

 Amino acids remain in balance to crude protein due to formulation on ratios

## Parametric Analysis for Ingredient Evaluation

| ĺ | edients for r | MAL / 701            | ▼ Tilapia S | taitei               |             |    |         |         |          |
|---|---------------|----------------------|-------------|----------------------|-------------|----|---------|---------|----------|
|   | Code          | Name                 |             | Solution<br>Amount % | Price       | ×  | Minimum | Maximum | Lo<br>Co |
| Þ | 2403          | Ricebran 13/13/13    |             | 33.1654              | 199.5000    |    | İ       |         | 195.20   |
|   | 3111          | Soybean Meal 48% Sol |             | 31.4448              | 530.0000    |    |         |         | 476.03   |
|   | 2422          | Rice Bran Ext 14%    |             | 16.5827              | 185.2500    |    |         |         | 176.650  |
|   | 4112          | Chilean Fishmeal 61% | 1           | 7.0000               | 826.5000    |    | 7.0000  |         | 822.62   |
|   | 4131          | Fishmeal Thai 60%    |             | 7.0000               | 855.0000    |    |         |         | 851.12   |
|   | 4261          | Feather Meal 80% DHB |             | 2.5000               | 570.0000    |    |         | 2.5000  | 570.00   |
|   | 5240          | Fish Oil             |             | 1.3667               | 1,482.0000  |    | 1.0000  |         | 62.02    |
|   | 6111          | Salt                 |             | 0.4537               | 114.0000    |    |         |         | 62.11    |
|   | 9317          | Fish Minerals        |             | 0.2500               | 997.5000    |    | 0.2500  | 0.2500  | 62.02    |
|   | 9137          | Fish Vitamins        | 1           | 0.1500               | 17,100.0000 |    | 0.1500  | 0.1500  | 62.02    |
|   | 6153          | MDCP                 |             | 0.0867               | 599.9999    |    |         |         | 66.17    |
|   | 4912          | L-Lysine 78%         |             |                      | 3,500.0000  |    |         |         | 966.24   |
|   | 4913          | Alimet 88%           |             |                      | 4,000.0000  |    |         |         | 62.02    |
|   | 4914          | Ca-HMB 80%           |             |                      | 3,990.0000  |    |         |         | 62.02    |
|   | 6123          | Limestone Powder     |             |                      | 85.5000     |    |         |         | 64.72    |
|   | 8603          | Mould Inhibitor      |             |                      | 1,425.0000  |    |         |         | 62.02    |
|   | 2205          | DDGS                 |             |                      | 260.0000    | -0 |         |         | 308.32   |
|   | 2206          | DDGS New             |             |                      | 260.0000    | -0 |         | 10.0000 | 349.55   |

 Base formula for introducing new ingredients

 DDGS New has a shadow price higher than the buying price

Indicates potential profits

## Parametric Analysis for Ingredient Evaluation

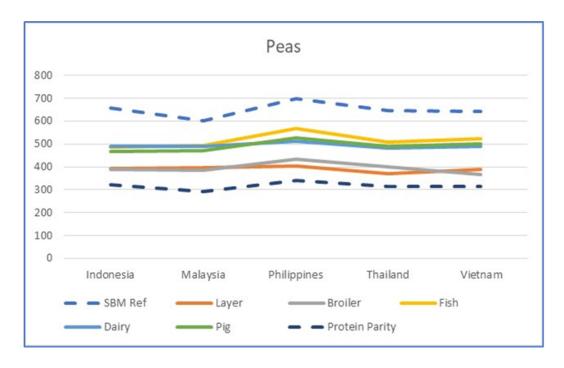
| R Parame   | Parametric Results                               |                                  |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                  |  |  |  |
|------------|--------------------------------------------------|----------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------|--|--|--|
| Ingredient | Ingredients for MAL / 701 Price: 2206 - DDGS New |                                  |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                  |  |  |  |
| Code       | Name                                             | 250.0000<br>438.6742<br>1,000.00 | 260.0000<br>439.6742<br>1.0000<br>1,000.00 | 270.0000<br>440.6742<br>1.0000<br>1,000.00 | 280.0000<br>441.6742<br>1.0000<br>1,000.00 | 290,0000<br>442,6742<br>1,0000<br>1,000.00 | 300.0000<br>443.6742<br>1.0000<br>1,000.00 | 310.0000<br>444.5437<br>0.8695<br>1,000.00 | 320.0000<br>444.9069<br>0.3633<br>1,000.00 | 330.0000<br>444.9322<br>0.0253<br>1,000.00 | 340.0000<br>444.9322<br>1,000.00 |  |  |  |
| 2403       | Ricebran 13/13/13                                | 28.8581                          | 28.8581                                    | 28.8581                                    | 28.8581                                    | 28.8581                                    | 28.8581                                    | 31.6517                                    | 31.6517                                    | 33.1654                                    | 33.1654                          |  |  |  |
| 3111       | Soybean Meal 48% Sol                             | 28.0267                          | 28.0267                                    | 28.0267                                    | 28.0267                                    | 28.0267                                    | 28.0267                                    | 30.1819                                    | 30.1819                                    | 31.4448                                    | 31.4448                          |  |  |  |
| 2422       | Rice Bran Ext 14%                                | 14.4290                          | 14.4290                                    | 14.4290                                    | 14.4290                                    | 14.4290                                    | 14.4290                                    | 15.8258                                    | 15.8258                                    | 16.5827                                    | 16.5827                          |  |  |  |
| 2206       | DDGS New                                         | 10.0000                          | 10.0000                                    | 10.0000                                    | 10.0000                                    | 10.0000                                    | 10.0000                                    | 3.6328                                     | 3.6328                                     |                                            |                                  |  |  |  |
| 4112       | Chilean Fishmeal 61%                             | 7.0000                           | 7.0000                                     | 7.0000                                     | 7.0000                                     | 7.0000                                     | 7.0000                                     | 7.0000                                     | 7.0000                                     | 7.0000                                     | 7.0000                           |  |  |  |
| 4131       | Fishmeal Thai 60%                                | 7.0000                           | 7.0000                                     | 7.0000                                     | 7.0000                                     | 7.0000                                     | 7.0000                                     | 7.0000                                     | 7.0000                                     | 7.0000                                     | 7.0000                           |  |  |  |
| 4261       | Feather Meal 80% DHB                             | 2.5000                           | 2.5000                                     | 2.5000                                     | 2.5000                                     | 2.5000                                     | 2.5000                                     | 2.5000                                     | 2.5000                                     | 2.5000                                     | 2.5000                           |  |  |  |
| 5240       | Fish Oil                                         | 1.3667                           | 1.3667                                     | 1.3667                                     | 1.3667                                     | 1.3667                                     | 1.3667                                     | 1.3667                                     | 1.3667                                     | 1.3667                                     | 1.3667                           |  |  |  |
| 6111       | Salt                                             | 0.4196                           | 0.4196                                     | 0.4196                                     | 0.4196                                     | 0.4196                                     | 0.4196                                     | 0.4412                                     | 0.4412                                     | 0.4537                                     | 0.4537                           |  |  |  |
| 9317       | Fish Minerals                                    | 0.2500                           | 0.2500                                     | 0.2500                                     | 0.2500                                     | 0.2500                                     | 0.2500                                     | 0.2500                                     | 0.2500                                     | 0.2500                                     | 0.2500                           |  |  |  |
| 9137       | Fish Vitamins                                    | 0.1500                           | 0.1500                                     | 0.1500                                     | 0.1500                                     | 0.1500                                     | 0.1500                                     | 0.1500                                     | 0.1500                                     | 0.1500                                     | 0.1500                           |  |  |  |
| 4912       | L-Lysine 78%                                     |                                  |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                  |  |  |  |
| 4913       | Alimet 88%                                       |                                  |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                  |  |  |  |
| 4914       | Ca-HMB 80%                                       |                                  |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                  |  |  |  |
| 6123       | Limestone Powder                                 |                                  |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                  |  |  |  |
| 6153       | MDCP                                             |                                  |                                            |                                            |                                            |                                            |                                            |                                            |                                            | 0.0867                                     | 0.0867                           |  |  |  |
| 8603       | Mould Inhibitor                                  |                                  |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                  |  |  |  |
| 2205       | DDGS                                             |                                  |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                  |  |  |  |

- Price sensitivity of DDGS can be seen
- Optimal volume to price can be established
- Ingredient substitutions can be studied



# Evaluation methods for new ingredients

- The Shadow Price data is calculated by the Least Cost Formulation
- Price at which a commodity can be included in a formula without changing the formula cost.
- If the commodity price is above the shadow price then the commodity will be rejected. If the prices is below the shadow price then the commodity will be used.
- The 'SBM Ref' price is the approximate market price for Argentine SBM in the South East Asian region.
- 'Protein Parity' shows the equivalent price of HF Canola (CAN-HF1) if the product was broadly evaluated purely on a crude protein basis ignoring the starch contribution to animal nutrition.
- Study across SE Asia for the different protein types

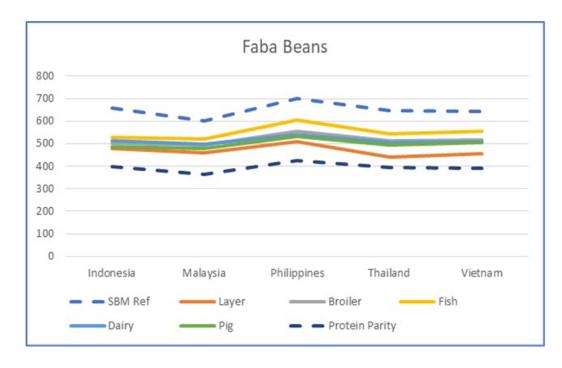



#### Selected Alternative Proteins

|                   | SBM   | Field<br>Peas | Faba<br>beans | Chick<br>peas | Lentils | Lupin<br>Seed<br>Meal | DH lupin<br>seed | Canola<br>Meal | Canola<br>Hi Fat 1 |
|-------------------|-------|---------------|---------------|---------------|---------|-----------------------|------------------|----------------|--------------------|
| Crude Protein     | 45.50 | 22.20         | 27.60         | 22.10         | 23.50   | 32.00                 | 39.00            | 36.70          | 31.00              |
| AMEn Poultry      | 2,269 | 2,606         | 2,662         | 3,080         | 2,741   | 1,911                 | 2,279            | 2,200          | 2,650              |
| AMEn Broiler      | 2,109 | 2,543         | 2,662         | 3,030         | 2,679   | 1,911                 | 2,279            | 2,200          | 2,650              |
| ME Swine          | 3,112 | 3,294         | 3,115         | 3,294         | 3,249   | 2,387                 | 3,818            | 2,903          | 3,250              |
| ME Ruminants      | 3,001 | 2,860         | 2,830         | 2,812         | 2,768   | 3,177                 | 3,177            | 2,331          | 3,051              |
| DE Fish Omnivore  | 3,618 | 3,441         | 3,523         | 3,213         | 3,091   | 3,452                 | 3,560            | 3,395          | 3,986              |
| Crude Fat         | 1.66  | 12.00         | 12.00         | 4.40          | 1.40    | 5.96                  | 7.54             | 3.30           | 13.00              |
| Crude Fibre       | 4.32  | 6.20          | 7.60          | 9.24          | 4.30    | 14.20                 | 3.42             | 11.20          | 10.00              |
| Ash               | 6.54  | 2.90          | 3.70          | 2.90          | 3.10    | 2.99                  | 3.11             | 6.70           | 5.20               |
| N Free Extract    | 29.98 | 47.20         | 38.10         | 50.36         | 67.70   | 34.85                 | 36.93            | 32.10          | 30.80              |
| Sucrose           | 8.65  | 1.40          | 1.50          | 1.00          |         |                       |                  | -              | -                  |
| Glucose           | -     | 0.02          | 0.20          | 0.05          |         | 1.70                  | 2.90             | 6.75           | 5.94               |
| Starch            | 1.00  | 40.63         | 38.50         | 44.18         | 45.70   | 1.10                  | 1.40             | -              | _                  |
| Dry Matter        | 88.00 | 90.50         | 89.00         | 89.00         | 89.00   | 90.00                 | 90.00            | 88.00          | 90.00              |
| Neutral Det Fibre | 9.57  | 18.90         | 12.90         | 20.06         | 12.60   | 22.92                 | 8.76             | 25.40          | 22.95              |
| Acid Det Fibre    | 5.69  | 6.10          | 9.10          | 12.14         | 4.80    | 17.87                 | 5.11             | 16.20          | 14.67              |
| Calcium           | 0.34  | 0.08          | 0.14          | 0.12          | 0.13    | 0.23                  | 0.13             | 0.65           | 0.51               |
| Av Phos (Poultry) | 0.26  | 0.18          | 0.19          | 0.11          | 0.10    | 0.12                  | 0.15             | 0.35           | 0.36               |
| Dig Phos (Swine)  | 0.31  | 0.13          | 0.21          | 0.19          | 0.18    | 0.13                  | 0.16             | 0.40           | 0.36               |
| Sodium            | 0.03  | 0.01          | 0.01          | 0.01          | 0.04    | 0.03                  | 0.03             | 0.07           | 0.08               |
| Chloride          | 0.05  | 0.02          | 0.01          | 0.12          | 0.06    | 0.15                  | 0.15             | 0.01           | 0.10               |
| Potassium         | 2.32  | 0.93          | 0.01          | 0.96          | 0.87    | 0.82                  | 0.97             | 1.13           | 1.00               |

- Be cautious not to evaluate on protein base only
- Some of the proteins are 'dual purpose' contributing protein, starch and energy, not only protein.
- Field peas and Faba beans are good starch sources
- ► DH Lupins medium energy and 7.5% fat
- Hi Fat Canola many types – important to know and test the type

#### Field Peas

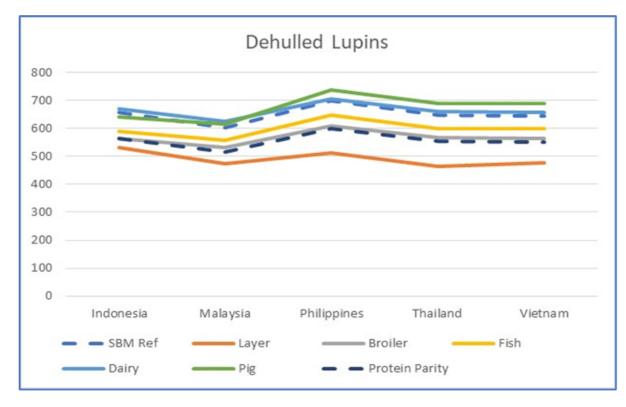



| Peas          | Indonesia | Malaysia | Philippines | Thailand | Vietnam |
|---------------|-----------|----------|-------------|----------|---------|
| Layer         | 60%       | 66%      | 58%         | 57%      | 60%     |
| Broiler       | 59%       | 64%      | 62%         | 62%      | 57%     |
| Pigs          | 74%       | 82%      | 81%         | 78%      | 81%     |
| Fish          | 74%       | 81%      | 73%         | 75%      | 76%     |
| Dairy         | 71%       | 78%      | 75%         | 75%      | 78%     |
| Protein Index | 49%       | 49%      | 49%         | 49%      | 49%     |

- Be cautious not to evaluate on protein base only
- Peas are a dual-purpose crop supplying both energy and protein.
  - Protein 22% as fed.
  - Starch 40% or more as fed.
- On a protein basis the pricing would be 49% of the price of SBM across the SE Asia countries.
- Pigs, Fish and Dairy show relative values in the range 71% to 82% with pigs showing the strongest value.
- Nutritional value of peas can be enhanced by:
  - ► Heating (extrusion, pelleting etc).
  - Dehulling.
- Potential for special applications in Aqua feeds and young pigs.



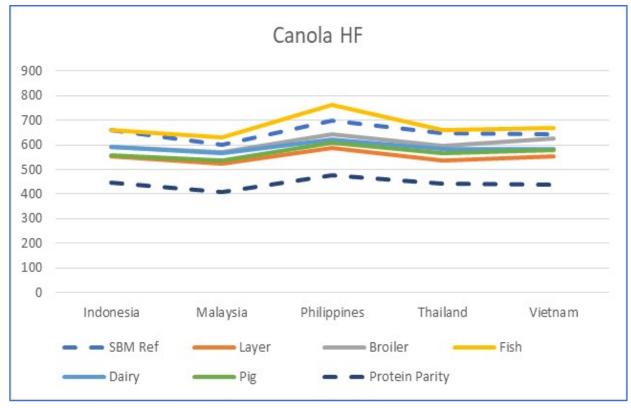
#### Faba Beans




| Faba Beans           | Indonesia | Malaysia | Philippines | Thailand | Vietnam |
|----------------------|-----------|----------|-------------|----------|---------|
| Layer                | 72%       | 76%      | 73%         | 68%      | 70%     |
| Broiler              | 76%       | 82%      | 79%         | 79%      | 80%     |
| Fish                 | 80%       | 86%      | 86%         | 84%      | 86%     |
| Dairy                | 78%       | 83%      | 77%         | 78%      | 79%     |
| Pig                  | 74%       | 80%      | 76%         | 76%      | 78%     |
| <b>Protein Index</b> | 61%       | 61%      | 61%         | 61%      | 61%     |

- ► Faba Beans are a dual-purpose crop supplying both energy and protein.
  - Protein 27% as fed.
  - > Starch 38% or more as fed.
- Faba beans are relatively low in protease inhibitors and can be complimentary to the trypsin inhibitor content of SBM when blended.
- Pigs, Fish and Dairy show relative values in the range 77% to 88% with fish feeds showing the highest value. This indicates a good nutritional content over and above the protein content.
- Nutritional value of faba beans can be enhanced by:
  - Heating (extrusion, pelleting etc).
  - ▶ Dehulling to reduce the fibre and increase the SID amino acid levels as well as energy.
- Potential for special applications in Aqua feeds and young pigs when processed to reduce the ANFs.
- Faba beans included in extruded sinking feeds for fish make the pelleting process less prone to




# **Dehulled Lupins**



| Lupins DH     | Indonesia | Malaysia | Philippines | Thailand | Vietnam |
|---------------|-----------|----------|-------------|----------|---------|
| Layer         | 81%       | 79%      | 73%         | 71%      | 74%     |
| Broiler       | 86%       | 88%      | 87%         | 88%      | 87%     |
| Fish          | 90%       | 93%      | 93%         | 92%      | 93%     |
| Dairy         | 102%      | 104%     | 101%        | 102%     | 102%    |
| Pig           | 97%       | 102%     | 105%        | 106%     | 107%    |
| Protein Index | 86%       | 86%      | 86%         | 86%      | 86%     |

- Shadow prices of Dehulled Lupin seed meal show gains from the processing for fish, dairy and pig feeds.
- Protein 39% as fed compared to the lower values for pulses in the range 22-27%.
- Starch is only 1% compared to typical levels of 40% found in pulses.
- ▶ Dehulling the lupin seeds raises the poultry AMEn from 1191 to 2279 Kcals/Kg.
- Pig and dairy feeds show good economic positioning with relative values averaging 104% and 102% respectively.
- Nutritional value of lupin seed meal can be enhanced by:
  - Dehulling (preferred).
  - Supplementation with NSP enzymes to aid digestion of the raffinose.

#### Hi Fat Canola



| Canola HF     | Indonesia | Malaysia | Philippines | Thailand | Vietnam |      |
|---------------|-----------|----------|-------------|----------|---------|------|
| Layer         | 84%       | 87%      | 84%         | 83%      | 86%     | 85%  |
| Broiler       | 90%       | 95%      | 92%         | 92%      | 97%     | 93%  |
| Fish          | 100%      | 105%     | 109%        | 102%     | 104%    | 104% |
| Dairy         | 90%       | 94%      | 89%         | 90%      | 91%     | 91%  |
| Pig           | 84%       | 89%      | 87%         | 88%      | 90%     | 88%  |
| Protein Index | 68%       | 68%      | 68%         | 68%      | 68%     | 68%  |

- High fat canola is an interesting variation in the ingredient supply chain with medium protein and relatively high energy:
  - Protein 31%.
  - ➤ Fat 13% (in this case, but this level is part of product design and is not a standard figure.
  - ► AMEn broiler 2650 Kcals per Kg compared to 2200 Kcals per Kg for canola meal.
- Good source of highly digestible fat.
- Can be used at 10-15% in broiler feeds and is also well accepted in layer feeds as an energy/protein source.
- Strong economic position in pig feeds.
- Should not be confused with cold pressed canola which is good for dairy cattle but can be unsuitable for monogastric animals if the glucosinolate and mryosinase activities are above normal.
- High Fat Canola products have several different production methods, content and application.
- Variables involved would be targets on the residual oil level and the degree of dehulling and heat treatment

#### Conclusions

- Avoid excess nutrients, especially protein and phosphorous
- Using amino acid ratios enables faster calculation of savings in crude protein.
   Crude protein is only an estimate of the amino acids. More accurate calculation of amino acids is preferred
- Experiments on protein density are necessary to find cost effective nutrient levels
- Optimization allows us to evaluate new ingredients. In this example DDGS has the potential to save feed cost
- Optimization can be used for prospecting for alternative raw materials using shadow price analysis to determine possible cost effective supplies
- Potential exists for using digestible amino acids more extensively in aqua diets to improve accuracy